Limiting distributions for additive functionals on Catalan trees

نویسندگان

  • James Allen Fill
  • Nevin Kapur
چکیده

Additive tree functionals represent the cost of many divide-andconquer algorithms. We derive the limiting distribution of the additive functionals induced by toll functions of the form (a) nα when α > 0 and (b) log n (the so-called shape functional) on uniformly distributed binary search trees, sometimes called Catalan trees. The Gaussian law obtained in the latter case complements the central limit theorem for the shape functional under the random permutation model. Our results give rise to an apparently new family of distributions containing the Airy distribution (α = 1) and the normal distribution [case (b), and case (a) as α ↓ 0]. The main theoretical tools employed are recent results relating asymptotics of the generating functions of sequences to those of their Hadamard product, and the method of moments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A repertoire for additive functionals of uniformly distributed m - ary search trees ( Extended Abstract )

Using recent results on singularity analysis for Hadamard products of generating functions, we obtain the limiting distributions for additive functionals on m-ary search trees on n keys with toll sequence (i) n with α ≥ 0 (α = 0 and α = 1 correspond roughly to the space requirement and total path length, respectively); (ii) ln ` n m−1 ́ , which corresponds to the so-called shape functional; and ...

متن کامل

Additive functionals on multiway search trees

We derive asymptotics of moments and limiting distributions, under the random permutation model on m-ary search trees on n keys, of functionals that satisfy recurrence relations of a simple additive form. Many important functionals including the space requirement, internal path length, and the socalled shape functional fall under this framework. The limiting behavior of these functionals exhibi...

متن کامل

A REPERTOIRE FOR ADDITIVE FUNCTIONALS OF UNIFORMLY DISTRIBUTED m-ARY SEARCH TREES

Using recent results on singularity analysis for Hadamard products of generating functions, we obtain the limiting distributions for additive functionals on m-ary search trees on n keys with toll sequence (i) nα with α ≥ 0 (α = 0 and α = 1 correspond roughly to the space requirement and total path length, respectively); (ii) ln ( n m−1 ) , which corresponds to the socalled shape functional; and...

متن کامل

Transfer theorems and asymptotic distributional results for m-ary search trees

We derive asymptotics of moments and identify limiting distributions, under the random permutation model onm-ary search trees, for functionals that satisfy recurrence relations of a simple additive form. Many important functionals including the space requirement, internal path length, and the so-called shape functional fall under this framework. The approach is based on establishing transfer th...

متن کامل

Non-crossing trees revisited: cutting down and spanning subtrees

Here we consider two parameters for random non-crossing trees: i the number of random cuts to destroy a sizen non-crossing tree and ii the spanning subtree-size of p randomly chosen nodes in a size-n non-crossing tree. For both quantities, we are able to characterise for n ∞ the limiting distributions. Non-crossing trees are almost conditioned Galton-Watson trees, and it has been already shown,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 326  شماره 

صفحات  -

تاریخ انتشار 2004